Periodic table of the elements IUPAC names 18 Н 2 13 15 He 14 16 17 Since 2016 F N Be Ne 18 Na Mg 4 5 6 8 9 10 11 12 ΑI Ar 34 36 32 Ti Sc **\/** Zn Ca Cr Mn Fe Co Ni Cu Ga Ge As Se Br Kr 43 49 52 53 54 Rb Sr **7**r Ag Sn Sb Nh Rh PdCd Te Xe Mo Tc Ru ln 57-71 73 75 79 85 72 76 77 78 80 81 82 83 84 86 Cs Ba Hf Ta W Pt Hg TI Ph Bi Po At Re Os lr Rn La Au 89-103 104 105 106 107 108 109 110 111 112 113 114 115 115 117 118 Rg Mc Fr Rf Db Hs Cn Nh Ts Og Ra Sa Bh Mt Ds Ac Lv Lanthanides Actinides | La | ⁵⁸ Ce | ⁵⁹
Pr | 60
Nd | ⁶¹ Pm | 62
Sm | Eu | Gd | 65
Tb | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yb | Lu | |-----------------|------------------|---------------------|----------------|------------------|----------|-----------------|-----------------|-----------------|----------|-----------------|----------|-----------------|----------|----| | 89
Ac | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | -97
 Bk | Cf P8 | Es Es | Fm | Md | No | Lr | # Heavy elements - Np synthesis - Neptunium was the first synthetic transuranium element of the actinide series discovered - isotope ²³⁹Np was produced by McMillan and Abelson in 1940 at Berkeley, California - bombarding uranium with cyclotron-produced neutrons - \rightarrow ²³⁸U(n, γ)²³⁹U, beta decay of ²³⁹U to ²³⁹Np (t_{1/2}=2.36 days) - Chemical properties unclear at time of discovery - → Actinide elements not in current location - → In group with W - Chemical studies showed similar properties to U - First evidence of 5f shell - Macroscopic amounts - 237Np - \rightarrow ²³⁸U(n,2n)²³⁷U - * Beta decay of ²³⁷U - → 10 microgram ### Heavy elements - Pu synthesis - Plutonium was the second transuranium element of the actinide series to be discovered - The isotope ²³⁸Pu was produced in 1940 by Seaborg, McMillan, Kennedy, and Wahl - deuteron bombardment of U in the 60-inch cyclotron at Berkeley, California - \rightarrow ²³⁸U(²H, 2n)²³⁸Np - * Beta decay of ²³⁸Np to ²³⁸Pu - Oxidation of produced Pu showed chemically different - ²³⁹Pu produced in 1941 - Uranyl nitrate in paraffin block behind Be target bombarded with deuterium - Separation with fluorides and extraction with diethylether - Eventually showed isotope undergoes slow neutron fission # Heavy elements - Am and Cm discovery - Problems with identification due to chemical differences with lower actinides - Trivalent oxidation state - ²³⁹Pu(⁴He,n)²⁴²Cm - Chemical separation from Pu - Identification of ²³⁸Pu daughter from alpha decay - Am from ²³⁹Pu in reactor - Also formed ²⁴²Cm - Difficulties in separating Am from Cm and from lanthanide fission products ### Heavy elements - Bk and Cf discovery - Required Am and Cm as targets - Needed to produce theses isotopes in sufficient quantities - → Milligrams - Am from neutron reaction with Pu - Cm from neutron reaction with Am - 241 Am(4 He,2n) 243 Bk - Cation exchange separation - ²⁴²Cm(⁴He,n)²⁴⁵Cf - Anion exchange ### Heavy elements - Einsteinium and Fermium - Debris from Mike test - 1st thermonuclear test - New isotopes of Pu - 244 and 246 - → Successive neutron capture of ²³⁸U - Correlation of log yield versus atomic mass - Evidence for production of transcalifornium isotopes - Heavy U isotopes followed by beta decay - Ion exchange used to demonstrate new isotopes ### Heavy elements - Md and No discovery - 1st atom-at-a-time chemistry - $^{253}Es(^4H,n)^{256}Md$ - Required high degree of chemical separation - Use catcher foil - Recoil of product onto foil - Dissolved Au foil, then ion exchange - No controversy - Expected to have trivalent chemistry - 1st attempt could not be reproduced - → Showed divalent oxidation state - ²⁴⁶Cm(¹²C,4n)²⁵⁴No - → Alpha decay from ²⁵⁴No - → Identification of ²⁵⁰Fm daughter using ion exchange #### Heavy elements - Lr discovery - 249, 250, 251Cf bombarded with 10,11B - New isotope with 8.6 MeV, 6 second half life - Identified at ²⁵⁸Lr # Superheavy Elemens - Why Study? - Test validity of the Extrapolations of the Periodic Table - Determine the Influence of Relativistic Effects on Chemical Properties - Help to Predict the Chemical Properties of the Heavier Elements - Determine Nuclear Properties of the Heaviest Elements #### **Superheavy Elemens - Stability?**