RADIOANALYTICKÉ METODY IV. Aktivační analýza 2. část

J. John

(s využitím podkladů doc. RNDr. Adolfa Zemana, CSc.)

http://www.jaderna-chemie.cz/data/documents/vyuka/john/RAM_IV_AA_2.pdf

Elektronická verze připravena s podporou

Třídění

Indikátorové metody

- Indikátorová analýza

 Indikátorová analýza
 Analýza přirozeně rad. látek

 Izotopová zřeďovací analýza
 Radioreagenční metody
 - 3a. Radiometrické titrace

Interakční metody

Aktivační

4. Aktivační analýza

Neaktivační

- 5. Metody založené na absorpci a rozptylu jad. záření
- 6. Emisní metody

Fotoaktivační analýza

Malé σ , prahové reakce (E_p > 1 MeV). Výhoda – velká pronikavost γ .

(y,p) (γ,α) $(\gamma, 2n)$ (γ,γ΄) (γ**,**n) (γ, f) (γ, α) $E_{v}^{\text{max}} = 40,7 \text{ A}^{-0,2}$ (20-10 MeV)Ca - 22 MeVÁ σ U - 13 MeV $\boldsymbol{\sigma}_{max}$ $E_{\gamma}^{\text{prah}} \sim \text{He} (22 \text{ MeV}) - U (6 \text{ MeV})$ <u>Výjimky:</u> ${}^{9}\text{Be} - 1,7 \text{ MeV}$ Ă D - 2.2 MeV E_{γ}^{max} $\sigma_{\text{max}} \sim 10^{-31} \text{ m}^2 - 10^{-28} \text{ m}^2$ Ēγ \dot{E}_{ν}^{prah} (lehká j.) (těžká j.) \overrightarrow{A}

Gigantická rezonance (šířka 6-12 MeV

Fotoaktivační analýza (2)

Zdroje fotonového záření:

<u>Izotopové zdroje</u>: ¹²⁴Sb (60,3 dne, E_γ = 2,07 MeV), ²⁴Na (15 hod, E_γ = 2,76 MeV), ⁶⁰Co (5,3 roku, E_γ = 1,33; 1,17 MeV) Nízká energie ⇒ jen speciální případy nebo reakce (γ,γ´)

Urychlovače elektronů:

- Elektrostatické urychlovače: E_{e,max} = 5 6 MeV, zato velké proudy - řádu několika mA
- 2. Betatrony: E_{e,max} = 25 40 MeV, X = 5.10⁻⁴-5.10⁻³ A.kg⁻¹.m⁻¹ (100 až 1000 R.min⁻¹.m⁻¹)
- 3. Mikrotron: $E_{e,max} = 5 50 \text{ MeV}$, X = 5.10⁻² A.kg⁻¹.m⁻¹ (10⁴ R.min⁻¹).m⁻¹)
- 4. LINAC: $E_{e,max} = 30 45$ MeV, ale i 1 GeV, expoziční rychlost o 2 až 3 řády vyšší než u ostatních urychlovačů.

Teorie: urychlovač 30 MeV při I = 100 μ A je rovnocenný reaktoru s Φ = 10¹³ n.cm⁻².s⁻¹ (stejný počet stanovitelných prvků na úrovni 10⁻⁷g).

Fotoaktivační analýza (3)

Brzdné záření ("bremsstrahlung", záření X).

Vznik při dopadu urychlených e[–] na terč z těžkého kovu. Účinnost konverze vysoká, roste s E_e.

Př.: při E_e = 20 MeV konvertovány cca 2/3 E_{kin} .

Energetické spektrum:

Široké, $E_X = 0 - E_{e,max}$. Intenzita roste s klesající E_X , s rostoucí $E_{e,max}$ roste podíl tvrdého *X*.

Fotoaktivační analýza (4)

Brzdné záření – 2.

<u>Úhlová závislost energie X:</u>

Při vzdalování od osy svazku e⁻ se spektrum X změkčuje.

Aktivace Cu ($E_p = 10,8 \text{ MeV}$) Aktivace C ($E_p = 18,6 \text{ MeV}$) $E > E_p \ \theta \ (0; 80^\circ)$ $E > E_p \ \theta \ (0; 60^\circ)$

N – počet aktivních jader

Spolu s rozptylem X a se složitou excitační funkcí znemožňuje provádění absolutní AA.

Fotoaktivační analýza (5)

Brzdné záření – 3.

<u>Úhlová rozdělení intenzity X:</u> Závisí na $E_e - s$ rostoucí E_e se svazek zužuje a závislost zvětšuje.

Fotoaktivační analýza (6)

Brzdné záření – 4.

Srovnání urychlovačů:

Prakticky se nepoužívá "hustota toku fotonů" — závisí na energii fotonů.

Snadno měřitelné veličiny:

- Expoziční příkon X
- Proud urychlovače

8

Závislost expoziční rychlosti X [R.min⁻¹] na $E_{X,max}$ ($I_e = 1 \ \mu A, 1 \ m \ od \ terčíku; 1 \ R.min^{-1} = 4,3.10^{-6} \ A.kg^{-1}$)

Ozařovací místo obvykle těsně u terče \Rightarrow nelze měřit X. Charakteristika pomocí fotojaderných reakcí, např.: ⁵⁵Mn(γ ,n)⁵⁴Mn ($\sigma_{20MeV} = 2.10^6 \text{ mol}^{-1}.\text{R}^{-1}$) $A_{^{54}Mn} = \dot{X} \cdot \sigma \cdot N_{^{55}Mn} \cdot (1 - e^{-\lambda \cdot t}) \Rightarrow \dot{X} = \frac{A_{^{54}Mn}}{\sigma \cdot N_{^{55}Mn} \cdot (1 - e^{-\lambda \cdot t})}$

Fotoaktivační analýza (7)

Vybrané meze stanovitelnosti pomocí PAA (LINAC, $E_e = 28$ MeV, $I = 50 \mu$ A).

	E _{prah.} [MeV]	T [min]	E_{β^+} [MeV]	M.S. [µg]
$^{12}C(\gamma,n)^{11}C$	18,6	20,7	0,97	0,04
${}^{14}N(\gamma,n){}^{13}N$	10,5	10,1	1,2	0,06
$^{16}O(\gamma,n)^{15}O$	15,7	8,05	1,73	0,05
$^{19}F(\gamma,n)^{18}F$	10,5	1,2	0,65	0,02
$^{31}P(\gamma,n)^{30}P$	12,4	2,56	3,30	0,015
54 Fe(γ ,n) 53 Fe	13,8	8,9	2,84	
32 S(γ ,np) 30 P	19,2	2,56	3,30	0,3

Fotoaktivační analýza (8)

 $\begin{array}{l} \underline{Stanovení \ D \ a \ Be} \ pomocí \ izotopového \ zdroje \ fotonů.\\ Reakční \ produkty \ stabilní \ \Rightarrow \ počítají \ se \ neutrony \ z \ (\gamma,n).\\ Citlivost: \ D_2O \ \sim \ 200 \ ppm \ (dvojnásobek \ přirozené \ koncentrace)\\ Be \ \sim \ 1 \ ppm \end{array}$

Fotoaktivační analýza (9)

Využití reakce (γ,γ´).

Nižší prahové energie \Rightarrow urychlovače s $E_e < 6$ MeV nebo i izotopové zdroje. Vznik izomerů, vhodných cca 30. Citlivost (urychlovač, $E_e = 3$ MeV, I = 1 μ A):

- desetiny mg: In, Hf
- mg: Se, Sr, Ag, Cd, Ir, Au
- desítky mg: Y, Rh, Lu, Pt, Hg

Malou citlivosť možno kompenzovať navážkami až 0,5 kg vzorku. Příklady:

$$\begin{split} ^{115} \mathrm{In}(\gamma,\gamma')^{115\mathrm{m}} \mathrm{In} \ (4,5 \ \mathrm{h}) & E_{\mathrm{p}} = 1,04 \ \mathrm{MeV} & \sigma = 8 \cdot 10^{-8} \ \mathrm{b} \\ 10 \ \mathrm{kCi}^{\ 60} \mathrm{Co} & 30-70\% \ \mathrm{In} \\ \end{split} \\ ^{111\mathrm{m}} \mathrm{Cd} \ (49 \ \mathrm{m}) & E_{\mathrm{p}} = 1,3 \ \mathrm{MeV} & \sigma = 1,4 \cdot 10^{-8} \ \mathrm{b} \\ ^{109\mathrm{m}} \mathrm{Ag} \ (40 \ \mathrm{s}) & E_{\mathrm{p}} = 0,8 \ \mathrm{MeV} & 1-70\% \ \mathrm{Ag} \\ ^{197} \mathrm{Au}(100\%)(\gamma,\gamma')^{197\mathrm{m}} \mathrm{Au} & E_{\gamma} = 279 \ \mathrm{keV}, \ \ldots \\ & T_{1/2} = 7,8 \ \mathrm{s} \end{split}$$

Radioanalytické metody na svazku iontů

Radioanalytické metody na svazku iontů (2)

- CE = Coulomb Excitation
- CPAA = Charged Particle Activation Analysis
- IIAES = Ion Induced Auger Emission Spectroscopy
- IILE = Ion Induced Light Emission
- PIXE = Particle Induced X-Ray Emission
- PRA = Prompt Radiation Analysis
- RBS = Rutherford Back Scattering

Aktivační analýza nabitými částicemi (CPAA)

Záchyt částice s x nukleony $\Rightarrow E_{Akt,jádro} = x.E_{vaz,nukleon} - E_{vaz,částice}$

Částice	Počet nukleonů	Náboj	E _{vaz.} částice [MeV]	E získaná terč. jádrem [MeV]
р	1	1	_	8
d	2	1	2,2	14
t	3	1	8,5	15,5
³ He	3	2	8	16
⁴ He	4	2	28	4
⁷ Li	7	3	39	17
¹² C	12	6	91	5
14 N	14	7	105	7
¹⁶ O	16	8	127	1

14

 \Rightarrow nejvýhodnější *d* a *t* (³He – 2x vyšší potenciální bariéra)

Aktivační analýza nabitými částicemi (2)

Aktivační formule.

Faktory: zeslabení svazku, excitační funkce, prahová energie

$$A = \frac{mN_A\Theta}{M} \int_0^{x_1} b_x \sigma_x dx (1 - e^{-\lambda t})$$

- $x_1 =$ tlouštka vzorku, kdy se energie částice sníží na hodnotu prahové energie reakce
- $b_x =$ intenzita iontového svazku v hloubce x vzorku
- $\sigma_x =$ účinný průřez pro energii v hloubce x

Aktivační analýza nabitými částicemi (3)

Excitační funkce.

Aktivační analýza nabitými částicemi (4)

Relativní metoda – nutné dodatečné korekce.

SINGLE COMPARATOR METHOD

$$\frac{A_{vz}}{A_s} = \frac{b_{vz}N_{vz}R_{vz}}{b_sN_sR_s}$$

- N-počet atomů
- R korekce na dosah

Aktivační analýza nabitými částicemi (5)

Aktivace protony.

Malý dosah – analýzy povrchových vrstev.

	DOSAH PROTONŮ [mm]		
E [MeV]	Al	Та	
1 10 20	0,015 0,63 2,1	0,007 0,2 0,63	

(p,n) 1-5 MeV, A →, E_{prah} →, σ ← (10-500mb pro lehké) (p,α) ; (p,t); (p,pn); (p,2n), E vyšší

Aktivační analýza nabitými částicemi (7)

Aktivace deuterony.

- (d,n) (d,p) při E 1~2 MeV
- (d, α) (d,t) (d,p α) (d,2n) aj. při E > 5 MeV
- $A \rightarrow \sigma \leftarrow 0,1 \sim 1b (lehké) 1 mb (těžké)$

Aktivační analýza nabitými částicemi (8)

Aktivace tritony.

Zdroje *t* málo časté – problémy s radioaktivitou T. Možnost využití reaktorových *n* a tritonů produkovaných reakcí ⁶Li(n, α)T.

Příklad: Stanovení kyslíku v beryliu (Be smíšeno s LiF, ozařování v reaktoru)

⁶Li(n, α)³H ¹⁶O(t,n)¹⁸F Q = +1,2 MeV $E_{max} = 2,7 \text{ MeV}$

0,1-0,2 % O₂ 7·10⁻⁹ g O₂

Příklad 2: Stanovení kyslíku v GaAs – vzorek se pokryje vrstvičkou kovového Li, ozařování v reaktoru.

Aktivační analýza nabitými částicemi (9)

<u>Aktivace ³He (Θ = 1,3.10⁻⁴ %).</u>

Řídké. Malý dosah – analýza povrchů.

Aktivační analýza nabitými částicemi (10)

Aktivace ${}^{3}\text{He} - 2$.

Nízká $E_{vaz} \Rightarrow$ řada reakcí exoergická, ³He nižších energií – specifická aktivace lehkých prvků. <u>Příklad</u>: Stanovení kyslíku v thoriu nebo beryliu

Aktivační analýza nabitými částicemi (11)

Aktivace částicemi alfa.

(α,n) – objev umělé radioaktivity (1934), přesto malé použití v AA. Reakce většinou endoergické.

 (α,n) – produkty radioaktivní, $\sigma \sim 0.1$ b (α,p) – produkty většinou stabilní, $\sigma \sim 0.1$ b (α,γ) – malé σ

Využity reakce: ⁹Be(α,2n)¹¹C, ¹⁰B(α,n)¹³N, ⁶³Cu(α,n)⁶⁶Ga, ²⁷Al(α,n)³⁰P, ²³Na(α,n)²⁶Al. Někdy měření promptních *n*, nebo promptního γ.

Příklad: Stanovení berylia ${}^{9}Be(\alpha,n){}^{12}C$, měření promptního γ , $E_{\gamma} = 4,4$ MeV, citlivost 5 μ g.

Příklad 2: Stanovení kyslíku v křemíku. ${}^{16}O(\alpha,pn){}^{18}F, E_{\alpha} = 4,4 \text{ MeV}, I_{\alpha} = 5 \mu\text{A}; \text{ chem. separace } {}^{18}F, \text{ citlivost } 10^{-7} \%O_2.$

Aktivační analýza nabitými částicemi (12)

Detekční limity CPAA.

Podmínky: (p, d, t, ³He): E \leq 12 MeV, ⁴He: E \leq 35 MeV t_{oz} = 1 poločas, max 2 hod; I = 2 μ A

≤ 1 ppb:	Ca, Y, B, C, N, O, Pr, Nd
1-10 ppb:	Li, Ti, Cr, Co, Ni, Cu, Zn, Ga, Ge, Br, Rb, Zr, Mo, Ru, Cd, Sn, Te, Ba, Hf, W, Yb, Os, Pt, Tl, Pb, Bi, La, Ce, Eu, Ho, Er, Lu
10-100 ppb:	H, He, Na, Mg, Al, Si, P, S, U, Fe, As, Se, Sr, Nb, Rh, Pd, Ag, Sb, I, Cs, Au, Hg, Dy
0,1-1 ppm:	Be, Cl, Mn, Re
1-10 ppm:	K, Ta

Interference v aktivační analýze

Primární interference:

Měřený radionuklid vzniká i z jiného než stanovovaného prvku. Vadí zejména pokud rušivá reakce probíhá na matricovém prvku. Lze korigovat výpočetně. Příklad:

$$\begin{split} ^{63}Cu(n,\gamma)^{64}Cu \\ \Theta_1 &= 0,691 \\ \sigma_t &= 4,3\cdot 10^{-28} \ m^2 \\ \phi_t &= 4\cdot 10^{11} \end{split}$$

 64 Zn(n,p) 64 Cu

$$\begin{split} &\Theta_2 = 0,489 \\ &\overline{\sigma} = 0,039 \cdot 10^{-28} \text{ m}^2 \\ &\overline{\phi} = 2,17 \cdot 10^{10} \end{split}$$

$$\frac{A_{Zn}}{A_{Cu}} = \frac{\overline{\varphi}\overline{\sigma}\Theta_{Zn}M_{Cu}}{\varphi_t\sigma_t\Theta_{Cu}M_{Zn}} = \frac{1 \text{ g } Zn = 360 \text{ ppm Cu}}{\varphi_t\sigma_t\Theta_{Cu}M_{Zn}}$$
$$= \frac{2,17\cdot10^{10}\cdot0,039\cdot65,17\cdot0,489}{4\cdot10^{11}\cdot4,3\cdot63,54\cdot0,691} \cong 3,6\cdot10^{-4}$$

Interference v aktivační analýze (2)

```
Primární interference - 2:
```

Častější u AA rychlými neutrony a CPAA. Interferující může vznikat i jako produkt přeměnové řady. <u>Příklady:</u>

⁵⁵Mn(n, γ)⁵⁶Mn ; ⁵⁶Fe(n,p)⁵⁶Mn ²³Na(n, γ)²⁴Na ; ²⁴Mg(n,p)²⁴Na ; ²⁷Al(n, α)²⁴Na ¹⁶O(n,p)¹⁶N ; ¹⁹F(n, α)¹⁶N ²⁰³Tl(n,2n)²⁰²Tl ; ²⁰⁴Pb(n,3n)^{202m}Pb \xrightarrow{EZ} ²⁰²Tl ⁵¹V(n, γ)⁵²V ; ⁵²Cr(n,p)⁵²V

Interference v aktivační analýze (3)

Sekundární interference:

Aktivují i částice vznikající při reakcích vyvolaných primárně aktivující částicí.
 U (n,γ) aktivace zřídka, častější u CPAA.

<u> Příklady:</u>

⁴⁸Ti(n,p)⁴⁸Sc ; ⁴⁸Ca(p,n)⁴⁸Sc ; ⁵¹V(n, α)⁴⁸Sc ¹⁹F(n,2n)¹⁸F ; ¹⁷O(p, γ)¹⁸F ¹⁴N(n,2n)¹³N ; ¹³C(p,n)¹³N ; ¹⁶O(p, α)¹³N

Interference v aktivační analýze (4)

Interference druhého řádu:

Dva případy – dochází ke:

- a) snížení "koncentrace" měřeného radionuklidu
- b) zvýšení "koncentrace" měřeného radionuklidu

<u>Příklad:</u>

Snížení koncentrace ¹⁹⁸Au vyhoříváním.

 ${}^{197}\text{Au}(n,\gamma){}^{198}\text{Au}(n,\gamma){}^{199}\text{Au} \xrightarrow{\beta}{}^{199}\text{Hg}$ ${}^{98 \text{ b}} {}^{26000\text{ b}} {}^{3,15 \text{ dne}}$

Nevadí při relativní metodě.

Interference v aktivační analýze (5)

Interference druhého řádu – 2:

Zvýšení množství stanovovaného nuklidu jeho vznikem jadernou reakcí z matricového prvku.

<u>Příklady:</u>

³¹P(n,
$$\gamma$$
)³²P \parallel ³⁰Si(n, γ)³¹Si $\xrightarrow{\beta^{-}}$ ³¹P(n, γ)³²P $\xrightarrow{\beta^{-}}$ ³²S

⁷⁵As(n,
$$\gamma$$
)⁷⁶As
⁷⁶Ge(n, γ)⁷⁷Ge $\xrightarrow{\beta^{-}}$ ⁷⁵As(n, γ)⁷⁶As $\xrightarrow{\beta^{-}}$ ⁷⁶Se
⁷⁶Ge(n, γ)⁷⁷Ge $\xrightarrow{\beta^{-}}$ ⁷⁷As $\xrightarrow{\beta^{-}}$ ⁷⁷Se
⁷⁶Ge(n, γ)^{77m}Ge

⁵⁵Mn(n, γ)⁵⁶Mn \parallel ⁵⁴Cr(n, γ)⁵⁵Cr \rightarrow ⁵⁵Mn(n, γ)⁵⁶Mn

Interference v aktivační analýze (6)

Terciární interference:

Přirozeně radioaktivní prvky. Nevadí u (n,γ) a (n,2n) reakcí, protože probíhá stejně ve vzorku i standardu. Na závadu u jiných reakcí.

<u>Příklad:</u>

Možno rozlišit gama spektrometricky. V tomto konkrétním případě významnější primární interference ⁴¹K(n,γ)⁴²K.

Méně běžné varianty AA

Méně běžné varianty AA (2)

Analýza s využitím zpožděných neutronů – 2.

Stanovení uranu – při ozáření pouze tepelnými neutrony specifické pro ²³⁵U. Rychlými n se štěpí i ²³⁸U a ²³²Th.

$$t_1 = 60 s$$

 $t_2 = 20 s$
 $t_3 = 60 s$

Pro $\phi_t = 10^{13} \text{ n} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$ 1 µg U_{nat} ~ 11700 n/min

stanovení ~ 10 µg U - přesnost \pm 1 % stanovení izotopového složení U přesnost \pm 0,5 % rel.

Pro $\overline{\phi} = 10^{13} \text{ n} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$ 1 µg Th ~ 412 n/min 1) Cd filtr 2) bez filtru

Méně běžné varianty AA (3)

Analýza s využitím zpožděných neutronů – 3.

Stanovení kyslíku, lithia a dusíku s využitím ¹⁷N.

$$^{17}N \xrightarrow{4.14s} ^{17}O \xrightarrow{okamžite} ^{16}O + n$$

<u>Stanovení O₂:</u>

¹⁷N vzniká při ozařování O₂ rychlými n ¹⁷O(n,p)¹⁷N a ¹⁸O(n,d)¹⁷N. Málo citlivé kvůli malému zastoupení těžkých izotopů O₂ a nízkým účinným průřezům (v 10¹³ n.sec⁻¹.cm⁻² cca 80 n / 1 mg O)

Stanovení Li:

Vyšší výtěžky zpožděných neutronů pro systém

 ${}^{6}\text{Li}(n,\alpha)\text{T} \rightarrow {}^{16}\text{O}(t,\alpha){}^{17}\text{N}.$

V 10¹³ n.sec⁻¹.cm⁻² cca 40.000 n / 1 mg ⁶Li rozpuštěného ve vodě.

Méně běžné varianty AA (4)

Speciální spektrometry.

I. Totálně absorbující spektrometr:

Comptonovsky rozptýlené fotony detegujeme v D_2 , v D_1 registrujeme pouze události, které nekoincidují s D_2 , tj. pouze totálně absorbované fotony. Pro E_{γ} 0,5 – 10 MeV. Současně snížení pozadí (cca 4x).

Méně běžné varianty AA (5)

Speciální spektrometry – 2.

II. Comptonovský (sumační) spektrometr:

Měříme události vyvolané comptonovskými elektrony v D₁ v koincidenci s comptonovskými fotony registrovanými pod úhlem 150° v D₂. V sumačních se impulsy sčítají – suma = pík totální absorpce. Malá účinnost (0,1 – 0,01 %).

Méně běžné varianty AA (6)

Speciální spektrometry – 3.

III. Párový spektrometr:

Tři detektory v řadě, prostřední obvykle polovodičový, všechny v koincidenci. Měříme impulzy ze středního detektoru, registrujeme pouze ty, které jsou v koincidenci s anihilačními kvanty gama zaregistrovanými současně v obou bočních detektorech.

 $E_{\gamma,mer} = E_{\gamma} - 2 \times 0,511 \text{ MeV. Vhodné pro vyšší } E_{\gamma}.$

Méně běžné varianty AA (7)

Speciální spektrometry – 4.

IV. Koincidenční spektrometr:

Měříme koincidenci 2 nebo více fotonů emitovaných v kaskádě. Registrujeme pouze ty, které jsou zachyceny v době τ (rychlé koincidence ~ 10⁻⁸ s, pomalé ~ 10⁻⁶ s). Umožňuje měřit málo energetické nuklidy na pozadí tvrdého gama (v jednoduchém spektru nelze). KASKÁDA γ

