RADIOANALYTICKÉ METODY V. Neaktivační interakční metody

J. John

(s využitím podkladů doc. RNDr. Adolfa Zemana, CSc.)

http://www.jaderna-chemie.cz/data/documents/vyuka/john/RAM_V_ARE.pdf

Elektronická verze připravena s podporou

Třídění

Indikátorové metody

Indikátorová analýza

 Indikátorová analýza
 Analýza přirozeně rad. látek

 Izotopová zřeďovací analýza
 Radioreagenční metody

 Radiometrické titrace

Interakční metody

Aktivační 4. Aktivační analýza

Neaktivační

5. Metody založené na absorpci a rozptylu jad. záření
 6. Emioní metody

6. Emisní metody

Absorpce β

Absorpce se řídí vztahy:

$$I = I_0 \cdot e^{-\mu_l \cdot x} = I_0 \cdot e^{-\frac{\mu_l}{\rho} \cdot d} = I_0 \cdot e^{-\mu_m \cdot d}$$
$$\mu_l \sim n = N_A \cdot \rho \cdot \frac{Z}{A}$$
$$I = I_0 \cdot e^{-k \cdot \frac{Z}{A} \cdot \rho \cdot x} = I_0 \cdot e^{-k \cdot \frac{Z}{A} \cdot d}$$

⇒ Pro konstantní ρ .*x* závisí zeslabení pouze na *Z*/A. *Z*/A = 0,4 – 0,5 pro všechny prvky kromě vodíku (absorbuje nejsilněji).

Využití: Stanovení poměru H : C u uhlovodíků

$$\mu_m = \sum_i \mu_{m_i} \cdot p_i$$
$$I = I_0 \cdot e^{-(\mu_m^H \cdot p_H + \mu_m^C \cdot p_C) \cdot d}$$

Absorpce β (2)

Uhlovodíky – stanovení H : C je kompletní analýza.

Pro stejný objem vzorku třeba znát ρ , lepší stejné množství (= stejné $d \Rightarrow$ není třeba měřit ρ). Zářič – ⁹⁰Sr. Místo I_0 měříme I_0 po absorpci ve standardním filtru (I_0 = $I_0.e^{-\mu.x}$). Přesnost ± 0,1 % vodíku.

Vliv dalších prvků jako O_2 , N_2 či S je malý. Např. při analýze minerálních olejů 1 % O_2 nebo N_2 způsobí chybu 0,07 %, respektive 0,04 % H_2 .

Obráceně: Známe H : C – stanovujeme ρ. Přesnost až ± 0,0002 g/cm³.

Absorpce γ

Stejný vztah jako pro β:

$$I = I_0 \cdot e^{-\frac{\mu_l}{\rho} \cdot d} = I_0 \cdot e^{-\mu_m \cdot d}$$

Využití pro měření hmotnosti, hustoty, tloušťky i chemického složení. Nejsilnější závislost μ_m na E při převládající interakci fotoefektem. μ_m

Absorpce γ (2)

Příklady použití:

- Analýza uhlovodíků (zdroj ⁶⁰Co, výhody není třeba korigovat na O a S, lze měřit i v nádobě, nevýhoda – stínění, velké vzorky).
- Stanovení vlhkosti betonu (zdroj ^{110m}Ag měření v Comptonově oblasti).
- Popelnatost uhlí:
 - Uhlí nízká Z (C, H, O, N)
 - Popel vyšší Z (Si, Al, Fe, Ca, Mg....)

 \Rightarrow Nízkoenergetické záření (¹⁷⁰Tm – 129 d, β^- , IP, E_{γ} = 84 keV)

Kalibrace přímo v % popelnatosti. Přesnost až 0,4 % popelnatosti.

Absorpce γ (3)

Praktické použití:

- 1. S tvrdým gama zářičem:
 - Měření tloušťky x při konstantním Z/A a ρ.
 - Měření plošné hmotnosti ρx při konstantním Z/A, případně ρ, pokud je konstantní i x.
- 2. S měkkým gama zářičem:
 - Určení Z/A při konstantní plošné hmotnosti px.

Použití v praxi:

- Stanovení vlhkosti
- Koncentrace roztoků
- Analýza slitin
- Popelnatost uhlí
-

$$I = I_0 \cdot e^{-k' \cdot \frac{Z}{A} \cdot d}$$

$$I = I_0 \cdot e^{-k \cdot \frac{Z^4}{A} \cdot f(E) \cdot d}$$

Absorpce γ (4)

Použití v technické praxi: problém – dodržení stejné vrstvy materiálu (např. na pásovém dopravníku).

⇒Metoda $\gamma - \gamma$ (měření s měkkým a tvrdým zdrojem gama současně). Tvrdý zdroj – malý vliv Z/A – stanovení ρ x.

Měkký zdroj – po korekci na px stanovení Z/A ze závislosti Z⁴/A.

Absorpce záření X

Výhodné – pouze fotoefekt, absorpce závisí na Z⁴/A. Zdroj: rentgenky nebo radionuklidové – např.

 ${}^{55}Fe \longrightarrow {}^{55}Mn + h\nu \quad (E = 6 \, keV)$

Použití:

1. Stanovení S v kapalných uhlovodících (v ropě)

S: $\mu_{\rm m} = 200 \text{ cm}^2.\text{g}$

C: $\mu_m = 10 \text{ cm}^2.\text{g}$

H: $\mu_{\rm m} = 0.5 \, {\rm cm}^2.{\rm g}$

Pokud známe přibližně poměr C : H a ρ , lze stanovit až 0,01 % S.

2. Analýza slitin blízkých prvků

Př.: Analýza slitiny Cu s Ni pomocí

 $^{67}Ga \xrightarrow{EZ} ^{67}Zn + h\nu \ (E = 8,7 \ keV)$

Ni: silná absorpce ($K_{abs} = 8,4 \text{ keV}$) Cu: slabá absorpce ($K_{abs} = 9 \text{ keV}$)

Zpětný rozptyl β

Důsledek interakce β s obaly i jádry atomů. Popis: Koeficient zpětného rozptylu – *R*. R je funkcí složení látky, síly vrstvy, energie záření a geometrického uspořádání.

Perioda	Z	а	b
II	2-10	1,2311	-2,157
III	10-18	0,9673	+0,476
IV	18-36	0,68582	+5,556
V	36-54	0,34988	+17,664
VI	54-86	0,26225	+22,396

Zpětný rozptyl β (2)

Sloučeniny (směsi) – střední Z. Více možností výpočtu, např.

$$\overline{Z} = \sum_{i} p_{i} Z_{i} \qquad \overline{Z} = \frac{\sum p_{i} Z_{i}^{2} / A_{i}}{\sum p_{i} Z_{i} / A_{i}}$$

$$\overline{Z} = \frac{p_1 A_1 Z_1 + p_2 A_2 Z_2 + \ldots + p_k A_k Z_k}{M}$$

H – anomální chování (velká absorpce $\beta \Rightarrow$ negativní ovlivnění rozptylu). Možné korekce:

$$R = a\overline{Z} + b - 10,382x_{H}$$

$$Z_{H} = -7,434$$

$$l_{max} \cong \frac{\sqrt{E_{max}^{3}}}{10\rho}$$

$$l_{Tm^{170}/Al} = 10\mu m$$

$$l_{P^{32}/Al} = 900\mu m$$

Zpětný rozptyl β (4)

13

Zpětný rozptyl γ

Komplikovanější než pro β. – změna směru Comptonovým rozptylem, ale pak fotoefekt.... Závislost na energii záření

Zpětný rozptyl α

Rutherford Back Scattering (RBS).

Rutherford Back Scattering (2)

- high energy particles directed toward a sample
- bombarding particles are detected
 - Energy
 - Angle
- technique used for determining depth distributions of elements based on the energy of the backscattered particle
- He+ or H+ particles are used at energies in the order of 100 keV to MeV
 - backscattered energy related to the mass of the target element
 - number of backscattered ions proportional to the square of Z
 - heavy target (W)
 - backscattered energy is high, almost as high as the incident energy
 - light target atoms (O)
 - backscattered energy is low, less than 15% of the incident energy
 - » Relationship kinematic factor
 - » M2 is scatter

Rutherford Back Scattering (3)

RBS Spectrum of a Superconducting Y1Ba2Cu3O8 Layer

16 MeV 16O

Absorpce a rozptyl neutronů

PRVEK	$\frac{\sigma_{ABS}}{[10^{-28}m^2]}$	σ _{ROZPT.} [10 ⁻²⁸ m ²]	PRVEK	σ_{ABS} [10 ⁻²⁸ m ²]	σ _{ROZPT.} [10 ⁻²⁸ m ²]
H Li B C N O Na Mg Al Si P S C	$\begin{array}{c} 10 & 111 \\ 0,33 \\ 70 \\ 753 \\ 0,0045 \\ 1,78 \\ 2 \cdot 10^{-4} \\ 0,49 \\ 0,06 \\ 0,21 \\ 0,13 \\ 0,19 \\ 0,49 \\ 31 6 \end{array}$	$ \begin{array}{c} 10 & 111 \\ 38,0 \\ 1,2 \\ 4,4 \\ 5,5 \\ 11,4 \\ 4,24 \\ 3,6 \\ 3,7 \\ 1,5 \\ 2,4 \\ 3,6 \\ 1,2 \\ 15 \\ \end{array} $	K Ca Mn Fe Cd In Sm Eu Gd Dy Hg Pb Ir	$\begin{array}{c} 1,97\\ 0,43\\ 12,6\\ 2,43\\ 2400\\ 190\\ 5500\\ 4600\\ 44000\\ 1100\\ 380\\ 0,17\\ 430\end{array}$	2,0 3,2 2,0 11,8
	51,0	15	Hf	105	

Absorpce a rozptyl neutronů (2)

Obsah prvků ekvivalentní 0,1 % B:

PRVEK	Li	Cl	Mn	Cd	Hg	In	TR-GD
OBSAH [%]	0,6	6,8	27	0,3	3,4	4	0,02

$$I = I_0 \cdot e^{-n\sigma_x} \qquad n = \frac{m}{M} N_A$$

2 roztok
$$H_3BO_3$$

 $L_D = 50 \text{ mg/L}$

Absorpce a rozptyl neutronů (3)

Třídění

Indikátorové metody

- Indikátorová analýza

 Indikátorová analýza
 Analýza přirozeně rad. látek
 Izotopová zřeďovací analýza
 Radioreagenční metody
 - 3a. Radiometrické titrace

Interakční metody

Aktivační

4. Aktivační analýza

Neaktivační

- 5. Metody založené na absorpci a rozptylu jad. záření
- 6. Emisní metody

Rentgenfluorescenční analýza

- 1) Rentgenová spektrální emisní analýza
- 2) Rentgenová spektrální analýza sekundární emisí
 = Rentgenfluorescenční analýza

(X-ray Fluorescence Analysis, XRF)

Rentgenfluorescenční analýza (1)

<u>WLDXRF = wawelenght dispersive X-ray spectrometry:</u>

 $N\lambda = 2d \sin \phi$

VZOREK

EDXRF = energy dispersive X-ray spektrometry: ANALYZÁTOR

Rentgenfluorescenční analýza (2)

$$j_1 = l + \frac{1}{2} \quad \Delta l = \pm 1 \qquad \text{m} = 2l + 1$$

$$j_2 = l - \frac{1}{2} \quad \Delta j = 0, 1 \qquad 2(2l+1)$$

Rentgenfluorescenční analýza (3)

$$\begin{split} & K\alpha_1: K\alpha_2: K\beta_1: K\beta_2 = 100: 50: 25: 5 \\ & L\alpha_1: L\alpha_2: L\beta_1: L\beta_2: L\gamma_1 = 100: 10: 80: 60: 40 \end{split}$$

 $\begin{array}{ll} \mbox{PRO STEJNÉ } \lambda & K\alpha_1:L\alpha_1=10:1 \\ \mbox{PRO K-serii:} & E\beta_2>E\beta_1>E\alpha_2>E\alpha_1 \end{array}$

 $EK \sim 7-8 \text{ krát} EL$

 EK_{α} : Al (1,487 keV) – U (98,428 keV)

Rentgenfluorescenční analýza (4)

MOSELEY:

$$\sqrt{\rho} = A(Z - a)$$

 $\rho = \frac{1}{\lambda} = \frac{v}{c}$ - vlnočet

$$v_{k_{\alpha}} = R(Z-1)^{2} \left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right)$$
$$v_{L} = R(Z-k)^{2} \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right)$$

Rentgenfluorescenční analýza (5)

DRASLÍK

Rentgenfluorescenční analýza (6)

$$\beta_k = \frac{Z^4}{Z^4 + 34, 2^4}$$

Rentgenfluorescenční analýza (7)

XRF – měření vzorku

uspořádání: a) na průchod

Rentgenfluorescenční analýza (8)

DVOUSTUPŇOVÉ BUZENÍ

- ROZPTÝLENÉ Z. X: minimum při 90°

- MATRICOVÝ EFEKT

Rentgenfluorescenční analýza (9)

ZÁŘIČE PRO XRF	$T_{\frac{1}{2}}$	záření	ENERGIE [keV]
<u>A) X a měkké γ</u>			
⁵⁵ Fe ¹⁰⁹ Cd ²⁴¹ Am ¹⁷⁰ Tm ⁵⁷ Co	2,7 r 470 d 470 r 127 d 270 d	X (⁵⁵ Mn) X (¹⁰⁹ Ag) γ X (Np) γ γ βREMS γ γ	5,7 22 87,5 17,7 26,4 59,6 až 1000 84 14, 122, 136
<u>B) γ tvrdé</u> ¹⁹² Ir ¹³⁷ Cs	74,5 d 33 r	γ X (Ba) γ (Ba)	308, 468, 600 32,2 662

Rentgenfluorescenční analýza (10)

ZÁŘIČE PRO XRF	$T_{\frac{1}{2}}$	záření	ENERGIE [keV]
<u>C) čisté β</u>			
³ H ¹⁴⁷ Pm	11,3 r 2,6 r	β- β	18 *) (Ti, Zr, Sc, Zr, BREMS) 230 **) (Al, Ag, BREMS)

*)
$$E = 4,510 \text{ keV} (\text{Ti}) K_{\alpha}$$

 $E = 2,042 \text{ keV} (Zr)L_{\alpha}$

**) 147 Pm/Al pro Z = 19 - 92

Rentgenfluorescenční analýza (11)

 APOLLO 15
 7 kanál
 0,5 - 2,75 keV
 Al : Si

 (Měsíc)
 1 - 5,5 keV
 Al : Si

<u>VENĚRA 13, 14</u> ANAL. CHEM <u>54</u>, 957A (1982) 450 °C, ~ 90 atm (~ 9 MPa)

D – proporc. dat. (4x) (90 % Kr + 10 % CO₂) 256-kanál 1,1 – 8 keV Mg-Fe 9 W, 8 kg

Rentgenfluorescenční analýza (12)

% (Veněra 14)				
MgO	8,1 ± 3,3			
Al_2O_3	$17,9 \pm 2,6$			
SiO_2	$48,7 \pm 3,6$			
K ₂ O	$0,2 \pm 0,07$			
CaO	$10,3 \pm 1,2$			
TiO_2	$1,25 \pm 0,41$			
MnO	$0,16 \pm 0,08$			
FeO	$9,1 \pm 1,9$			
\sum	~ 96 %			

Rentgenfluorescenční analýza (13)

Rentgenfluorescenční analýza (14)

PRO MĚŘENÍ V OBLASTI ΔΕ

 $N = N_1 + N_2$ $N_f = N_1 e^{-\mu_1 d} + N_2 e^{-\mu_2 d}$

Rentgenfluorescenční analýza (15)

DIFERENCIÁLNÍ VYVÁŽENÉ FILTRY (ROSSOVY)

Rentgenfluorescenční analýza (16)

<u>MĚŘENÍ:</u>

F₁:
$$N_1 = N_I e^{-\mu_1(E_I)d_1} + N_a e^{-\mu_1(E_a)d_1} + N_{II} e^{-\mu_1(E_{II})d_1}$$

F₂: $N_2 = N_I e^{-\mu_2(E_I)d_2} + N_a e^{-\mu_2(E_a)d_2} + N_{II} e^{-\mu_2(E_{II})d_2}$

$$\mu_1(E_I)d_1 = \mu_2(E_I)d_2$$

$$\mu_1(E_{II})d_1 = \mu_2(E_{II})d_2$$

$$VYV\dot{A}\check{Z}ENI$$

$$\Delta = N_2 - N_1 = N_a (e^{-\mu_2(E_a)d_2} - e^{-\mu_1(E_a)d_1})$$

$$\Delta = N_2 - N_1 = kN_a$$

$$N_a = \frac{N_2 - N_1}{k}$$

Rentgenfluorescenční analýza (17)

RIXE – RADIOACTIVE IMPLANT INDUCED X-RAY EMISSION

- Např.: ⁵⁷Co, ⁶⁷Ga, ^{99m}Tc, ¹¹¹In, ¹²⁵I, ²⁰¹Tl se inkorporuje do analyzovaného vzorku...
 - stanovení kovů v orgánech <u>in vivo</u> budící radionuklid ve formě radiofarmaka

J. RADIOANALYTICAL AND NUCLEAR CHEMISTRY Articles 148 Vol.1 (1991) 33-41

Particle Induced X-Ray Emission (PIXE)

- Particle-induced x-ray emission (PIXE)
 - Observing and detecting fluorescent x-rays
- charged particles from an accelerator hits a thin sample in a vacuum chamber
 - typically 2-4 MeV protons
- particles collide with the electrons in the material
 - Inner shell electrons ejected
 - Faraday cup is used to collect the charge deposited by the particle
 - Determine beam current
- characteristic x-rays from the sample are detected

PIXE (2) – uspořádání (Harvard PIXE system)

42

PIXE (3) – spektra

- spectrum consists of discrete x-ray peaks superimposed on a continuous bremsstrahlung spectrum
 - K_{α} and K_{β} lines of lighter elements \rightarrow from the filling of the K shell vacancies
 - L lines of the heavier elements
 - peaks corresponding to a given element are integrated to provide peak areas
 - \rightarrow amounts of element obtained from
 - * knowledge of the absolute ionization cross sections
 - * fluorescence yields
 - * beam current geometry
 - comparison to the results obtained from a thin elemental standard
- Elemental not isotopic composition •
- Sensitivity 10 to 100 ppm

PIXE Particle Induced X-ray Emission Detector Elements: Na - U X-rays Sensitivity: ppm Precision: 10 % relative Depth Resolution: none 3 MeV p Raster Imaging possible Sample CuKa SnLaby 20 keV Electrons (EDX)

Si(Li)

